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Coherence and stochastic resonance in a two-state system
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The subject of our study is a two-state dynamics driven by Gaussian white noise and a weak harmonic
signal. The system resulting from a piecewise linear FizHugh-Nagumo model in the case of perfect time scale
separation between fast and slow variables shows either bistable, excitable, or oscillatory behavior. Its output
spectra as well as the spectral power amplification of the signal can be calculated for arbitrary noise strength
and frequency, allowing characterization of the coherence resonance in the bistable and excitable regimes as
well as quantification of nonadiabatic resonances with respect to the external signal in all regimes.

PACS numbes): 05.40.Ca

I. INTRODUCTION FitzHugh-Nagumo model driven by periodic force and noise
[6]. A similar effect known as “time scale matching” was

Additive noise can have quite different effects when act-found by approximations and numerical studies of the leaky
ing on oscillatory, excitable, or bistable dynamical systemsintegrate-and-fire mode[20-23 with periodic driving,
In the deterministic case an oscillatory system, e.g., a hawhich is a simple model for neuronal excitations.
monic oscillator or limit cycle dynamics already possesses In order to provide some insights into the interplay be-
an eigenfrequency, which can be modified by random forctween the mentioned resonance effects in different dynami-
ing [1]. In contrast to that, the influence of noise in excitablecg| regimes we consider in this study a simple two-state dy-
or bistable systems is more dramatic. Without any perturbanamics resulting from the limit case of a well-known
tion there is no response of the system at all, while too larg&tochastic system—the FitzHugh-Nagutf&iN) model[24]
fluctuations just result in a noisy output. In the case of aryriven by a weak harmonic signal and noise. The simplifica-
excitable system driven by an approprigteoderatgamount  tions of the FHN model that we utilize af@) a piecewise
of noise, however, the trajectory of the system can becomg, oy version of the widely used cubic null cline of the volt-
quite regular, a phenomenon knownagonomous stochas- e yariable(b) a perfect time scale separation between fast

tic resonance(1,2] or coherence resonano€R) [3-9). It and slow variables, an¢c) a discretization of the voltage

can either be understood as a noisy precursor of a bifurcation_ . . . -
[4], e.g., a Hopf bifurcation, or be explained by means of thevarlable into two values representing the firing and the rest

presence of different scaling behavior for the two time scale%1g state,ﬂ:eslgﬁtlz\flvelyd \Il\(th"éﬁ)' IS ra;ther‘ a rgalttefr of tazteln
and their variance in excitable systefi@3. The trajectory in ecause the Model ISET 1S Just a -~ model of a mode

this case may be looked upon as the motion @toghastic [25], the latter two gssumptions actually imply neglect Of
limit cycle [10,1] with a corresponding noise-induced sub_thrgshold oscn_latlons that are not relevant for_the main
eigenfrequency. For a given noise level, it might thus beexcﬂaﬂqn mechanlsm and its response to a weak S|_gnal if the
impossible to distinguish between the excitable and the os¢oltage is considerably faster than the recovery variable. The
cillatory system. resulting two-state dynamics may be regarded as a formal
Bearing this in mind, we consider the response of bottgeneralization of the model of a stochastic Schmitt trigger
dynamics to additive weak periodic forcing. The oscillatory[26—28 but, in contrast to this device, displays not only
system driven by small fluctuations certainly displays a resobistable but also excitable or oscillatory behavior depending
nance with respect to the driving frequency. The same holden system parameters and corresponding to various regimes
true for the excitable system in the case of a distinct eigenef the FHN model. Using a method developed by Melnikov
frequency, i.e., in the case of CR. Since the considered sy$28], spectral quantities of this system can be calculated ana-
tems are stochastic, this resonance results in a nonmonotonigically for arbitrary driving frequency and noise strength.
dependence of the spectral power amplificati®RA 7 as a We start out with the reduction scheme for the FHN
function of driving frequency. model yielding the two-state model. Then coherence reso-
On the other hand, stochastic systems driven by a suthance is quantified by means of the output spectrum in the
threshold signal can also exhitstochastic resonancéSR)  apsence of an external signal. Finally, we calculate the SPA

[12], i.e., the response of the system to a signal, e.g., thg, linear response theofi29] and discuss both resonances.
SPA, goes through a maximum as a function rafise

strength In particular, in excitable systems this has been

verified for aperiodic drivingaperiodic SR[13,14] and for Il. DERIVATION OF TWO-STATE DYNAMICS:

harmonic driving[15-19. In the latter case and from the FOKKER-PLANCK EQUATIONS ’

point of view of SR the above supposed dependence of the

SPA results in an additional improvement of SR by an ap- We consider the FHN model in a piecewise linear version
propriate tuning of the driving frequency. This has been[25]. With v being the fast voltage andthe slow recovery
shown by means of numerical simulations of an excitablevariable, this dynamics reads
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u o=—1 — i _
(a) e fl) Sef(d () b(t)y=bg+f(t), c=0, o
X or (1) b=by, c(t)=T(1).
M y l o=+1 . ~
— «—t ' By means of the simple transformatior=u—c(t) Egs.(1)
yrefl)  yrefly) can be recast into
v=F(v)—u,
" %( (b) //// ' 3
- x—eflt) ‘x-eflt) 5 B _
/! l T x u=yv—U+b(t)—c(t)—c(t) + V2Q&(t).
y o=t1 From these equations it becomes apparent that a difference
S N between the two driving modes occurs for high frequencies
yrefl) y+efl) only since in caséll) the effective amplitude of the signal
scales with driving frequenc§)s due to the temporal deriva-
tive, whereas in cas@) it does not.
u () o=-1 The system we shall study is obtained for-0,_i.e., in
. x—efit) ~xef(t) the case of a perfect time scale separation @hdu. This
; . limit is justified if one is not interested in subthreshold os-
l T cillations and other features occurring for a finite and not too
v y o=t1 small 7. It was recently show7] that for ~—0 the two-
ma— «—t + dimensional dynamics (3) separates into two one-
yrefl)  yref®) dimensional subsystems for the slow variableIn other

words, an adiabatic elimination of the fast variablean be

FIG. 1. Reduction of the two-dimensional dynamics to a two- pe_rformed yielc_iing a three-valued functiorfu). Since the
state system. Possible transitions are indicated by arr@vg.he middle branch IS unstable the relevant values are_those cor-
bistable dynamics is mapped to a system with two stable stites. '€SPonding to the left and right stable branches, i.e., to the
One stable fixed pointexcitable regimg leads to one stable and Mentioned subsystems. For these one-dimensional systems a

one unstable statéc) the limit cycle dynamics corresponds to a linear force or a parabolic potential, respectively, is obtained
system without any stable state. due to (piecewisg linearity of the null clines. The points

where thev null cline becomes unstable+(1/2,+1/2) are
. converted to absorbing boundariésink pointg, allowing
v=F(v)—u+c(t), transitions to the points with the sarsecoordinate on the
respective opposite bran¢kource pointgs
Introducing a new time scate—t/(y+1) as well as new

U= yv—u+b(t)+2Qé(t), (D) variables for the two subsystems
—1— =—1/2 _T bo_’)’ _ — it * ot
v, Us X_u_lT_ef(t)’ f(t)=A(wg)e s+ A* (wg)e'“s
F(v)= v, —l2<v<l/2
+1-v, v=1/2. corresponding to the left branch and
Variables and parameters as well as all functions in the fol- y=—Uu+ Dot ¥ + €ef(t)
lowing are considered to be dimensionless. In Efjsé(t) is 1+y

Gaussian white noise, is the (small time scale ratio of the
two variables, and,c are parametergossibly time depen- for the right branch leads to the dynamics
dent, see beloywdetermining the positions of the null clines
u=F(v)+c andu=yv+b. Depending on the intersection
points of these null clinegstable or unstable fixed points

x=—x+\2D&(t),

we obtain either the bistabléwo stable and one unstable )
fixed pointg, the excitable(one stable fixed point or the y=—y+2D&(1).

oscillatory regime(one unstable fixed poinbf the system

(cf. Fig. 1, left side. Here, a rescaled driving frequenays=Q./(1+7y) and

A weak signaif (t) = e cos)d) can enter the systeifi)  noise strengthd =Q/(1+ y) have been used. By our choice
in different ways, additive in the equation of the recoveryof variables the time dependent force is transformed to a
variableu [15—17 or in that of the voltage variablke [18,6], modulation of the sink and source points, where the effective
i.e., either amplitude of the signal is modified by the prefactor
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1/2 particle can escape from this stable state — 1 only by the
0] AI:—(1+ N(l-iwy’ action of noise due to the finite potential barrier at the sink
S .
point.
) In principle, there are three different possibilities corre-
11(1+y)+iwg sponding in a natural way to the three different regimes of
or (I A”:_EW' the FHN model(see also Fig. )t (a) two stable states

(bistable regimg (b) one stable and one unstable stédg-
We note that fory=0 the absolute value of this prefactor is Citable regimg and (c) two unstable statefoscillatory re-

less than unity in both cases. The time dependent sink andgf™m®-

source points of the system are given by Case(a) coincides fory=bo=0, i.e,x;=y,=—-x_=
—y_, with a bistable symmetric Schmitt trigg€8T) driven

by exponentially correlated noise and harmonic signal,

x_—ef(t)=— 1 bo—v ef () which has been treated by Melnik¢28]. The formulas we
- 2 1l+vy ' shall present here are valid for the asymmetric Schmitt trig-
ger as well[30], whenx_=y_+2§ andx, =y, +26 with
6 as an asymmetry parameter. The reduction of the FHN
X, —ef(t)= }_ bo—vy —ef (1) model, however, results in a more general bistable behavior
2 1+vy ' than this case. Consider, e.g., Figa)lwhere for an appro-

(6) priate noise level a situation is realized for which relaxation
into the potential minimum ifboth states takes a fairly long
bo+ 7+€f(t) time compared to the escape time over the relatively small
1+y ' potential barrier ak_ andy_ . Clearly, this possibility is a
consequence of the fact that the FHN model is a nonpotential
system. For caséb) we note that the unstable state in the
v, +ef(t)= 1+ bo+ y+ef(t), excitable case may be intgrpreted as the firing state of the
2 1l+vy system, whereas the “nonfiring” stable state represents both
recovery(relaxation into the minimupnand resting statéoo-
wherex_,y_ ,x,,y, are the(time independentpoints of  sition close to the minimuin In both casesa) and (b), a
the unperturbed systerme€0). In the subsequent sections finite noise strength is required in order to obtain a nonzero
we will consider the bistable and oscillatory case to be symeurrent in the system. This does not hold true in ca@se-
metric with respect to statex(=y_ ,x, =y.). Excitable  with two unstable states the system works even without noise
systems are in this sense necessarily asymmetric. In particand switches periodically betweern=+1 ando=—1 and

f(t)= 1
y,+€ (t)—_z-f'

lar, we choose back withT,=In(x, /x_) and T, =In(y, /y_), respectively.
With signal the boundaries are modulated in time so that
Regime Y bp — X y- X Yy transitions are enhanced in one and suppressed in the other
i state for a given time. In this work, a signal is referred to as
b'Stgble 213 c - -0l -0l 09 09 weak if it does not alter the currents of the system much;
excitable 1 25 - -02 0208 12 .,hsequently, it should be subthreshold in casgand (b).
oscillatory  7/3 0 — 0.2 0.2 1.2 1.2

This definition also applies to cage) where the system

reaches the thresholds even in the absence of a signal.

In the limit considered, the voltage variahlét) depends on Note that the system works like two coupled leaky

U and on the branch the system is currently occupying. Théntegrate-and-firdlF) models driven by external signal and

latter dependence carries the biophysically relevant informanoise where the absorption in one IF model is followed by

tion; it is thus justified to consider a discretized variablg)  reset to the other, and vice versa. A single IF model has

with two stateso=+1 for the excited(right branch and  recently been studied by different research grojgfs-23.

resting state(left branch, respectively, instead of the vari- In contrast to the common IF model, here the firing state is

ablev(t) itself. In the following we study the dynamics of taken into account as a second state, allowing a well-defined

this variableo(t) and its spectral properties. approximation of the different regimes of the FHN model.
Without signal(e=0) the dynamics can be regarded asMoreover, the reduction of the FHN model yields a linear

the motion of a Brownian particle jumping between two dynamics of the slow variable in each state, whereas by the

parabolic potentials. This is realized by absorption at thdF model the fast voltage variable is modeled. We would like

boundaries<_ or y_ (sink point3 and by resetting ty,. or  to point out that Melnikov’s method of calculating the spec-

X, , the source points in the respective opposite state. Th&Um and the SPA applies to the IF model too, without as-

particle thus follows a circular flowk, —x_ jumping to ~ Suming an unphysiol_ogical reset of the signal phase after an

y.—y_ and jumping back to, (cf. Fig. 1) and generates @absorption event as if20,22. _

the aforementioned two-state trajectaryt). A state, e.g., The corresponding Fokker-Planck equations for E4.

the states=—1 corresponding to variable is left by re- ~ are given by

laxation from source to sink point if no potential minimum is

present in this state, i.e., ¥_>0. Then the state=—1 is Py (X, 1) = dx(X+ D dy) Py(X,1),

unstable and in case of vanishing noise strength is left in a (7)

deterministic time. If there is a minimum, i.e.,Xf. <0, the dPy(y,t)=3dy(y+Day)Py(y,t).
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The densitied, ,P, obey certain boundary and jump condi-
tions. The probabilities vanish at the sink points,

Py Dy —ery=0, Py(Y,Dly +ery=0. 8

Furthermore, continuity at the source points is required:

[Px(XD]x, —ety=0, [Py(y.)]y +ery=0, (9

where the brackets denote the jump of a functgx): .
[9]x=9(x+0)—g(x—0). 0 1
Equations(7) are actually coupled by the condition that
the probability efflux out of one state equals the influx into  FIG. 2. Output spectrum of the bistable systéamithout signa)
the other state, yielding versus frequency for different noise level§a)—(e): D
=0.0024,0.0031,0.0089,0.1226,1.0. Inset: Contour plot of spectral
density versu® andw compared with the mean frequeney,(D)

2

[0 Px(X, 1) ]x, —ety=—yPy(Y:Dly_+erny» (thick line) from Eq. (13).
(10
[yPy(Y, D]y +etiy=— IxPx(XD]x_— ety - N(w)= f_ dr(o(t)o(t+7))e'"
The total probability of both states is conserved and normal- 8Jo_ [[1-wy(w)][1-wy(w)]
ized to 1: =— ( (14
w 1-wy(w)Wy(w)
o o These waiting time distributions can be calculated by
X_fff(t)dx PX,t) + y_+ef(t)dy Puy:t)=1. (1) | aplace transformation of Eq7) and appropriate initial con-

ditions as in[28], yielding

The processr(t) is entirely determined by these equations.
The problem of computing its output spectrum in the absence v, (o) e(xi—x%)MDU(_ iw—13,x, /D)
and the SPA in the presence of a signal can be solved in a w,(w)= =

similar way as i{28]. Therefore, we shall just give the main Yy (@) U( —iw— E,x_ /\/5)
results and refer the interested readef28)] for details. 2
(15
I1l. SYSTEM WITHOUT SIGNAL: COHERENCE v, () e(yifyz_)/4DU —iw—2% /D
RESONANCE Wy ()= \Py*(w) _ ( 1“) .Y+ /VD) 7
If no signal is applied to the systena£0) the stationary 7 U( —lw— 7Y /\/5)

solution of Eq.(7) can readily be calculated. Normalization
of this solution yields the stationary current

/2D /
JOZUX* _dzezzerfc(z)+fy*
x_1

where the numerators and denominators defing and

U(a,z) denote the parabolic cylinder functiof®2].

2D -1 The spectrum thus reads
- dzezzerfo(z)> NS P
2D

V2D y_I\2
(12 N(w)
which on the one hand is identical with the stationary exci- 8J,  [[¥x (0)=¥y (0)][¥y (0)=¥y (0)]
tation rate(pulse rat¢ of the system and on the other hand = ? e T, (), (0)— ¥V, (0)V, (o)
coincides with the inverse of the sum of the mean first pas- N - * Y
sage timex,—x_ andy,—Yy_. The time scale given by (16)

this rate can be expressed by a frequency
For the bistable case of a symmetric Schmitt trigger (
=y,=—X_=-—y_) treated by Melnikov this spectrum ex-
wn=2mJg. (13 hibits a Lorentz-like shape for arbitrary noise strength. There
is no maximum at a finite frequency. In contrast, for the
The output power spectrum for the procesd) is given by  above mentioned bistable case of long lasting relaxation at
the characteristic function81], i.e., the Fourier transforms small barriers for both states, i.e; >|x_| andy, >|y_|,
w,(w),wy(w) of the waiting time distributions of the states the output spectrum displays for an intermediate noise
oc=-1ando=+1: strength a peak at finite frequen@yig. 2), indicating a regu-
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. . . FIG. 4. Output spectrum of the oscillatory systéwithout sig-
FIG. 3. Output spectrum of the excitable syst@mithout signa) nal) versus frpeque%cy for different noisg Iyevgr(g)—(e)' Ig

f i i —(f):
o o e aTent hose 'g‘éi'%)ur(glot o spec= 0-0018,0.006 84,0.0195,0.0558,0.35. Inset: Contour plot of spec-
T . (iral density versuD and o compared with the mean frequency

tral density versud and o compared with the mean frequenc T
(D) (thick line) from Eq. (13). P MY (D) (thick line) from Eq. (13).

lar behavior. This is an example of coherence resonance infsequency wo=m/In(x, /x_) and its (odd harmonics. The
bistable system caused by large quasideterministic times dghean frequency(cf. the contour plot in Fig. ¥ does not
relaxation in both states. Consequently, it is a result of thevanish forD— 0 as in bistable or excitable systems but tends
nonpotential character of the FHN model. The noise-inducedo wo. With growing noise the peaks are shifted toward
eigenfrequency, i.e., the position of the peak, nearly coinhigher frequencies, an effect that was found numerically in
cides with the mean frequency of the system given by Eq[1], and then peaks at higher harmonics vanish. Finally, the
(13) (cf. the contour plot in Fig. 2 Of course, the height and peak close to the fundamental frequency also disappears and
width of the observed peak can be improved by decreasing Lorentz-like shape of the spectrum is observed for large
the distances of the minima to the sink poipts| and|y_|.  noise strength.

The spectrum of the excitable system for<0,y_ >0
is depicted in Fig. 3. It starts at small noise intensity at a low|y, sySTEM WITH SIGNAL: STOCHASTIC RESONANCE
level for all frequencies. The intensity of the process van- ,
ishes for decreasing noise in contrast to the same limit in the The amplification of a small signaéf(t)=e(Ae ™'
bistable regime. For increasing noise a peak appears, shiftingyc.c.) can be calculated in linear response using the
first to larger and then back to lower frequencies, where igsymptotic solution®,(x,t), P,(y,t) for which the follow-
vanishes for large noise intensity. The peak height as a fundng ansatz is made:
tion of D goes through a maximum which is again a mani-
festation of coherence resonance. Clearly, the effect is more 2 2

i : X5 —X _

pronounced than in a comparable bistable system., for P (x,t)zPO(x)Jreexp( + >[Aelwstr (x)+c.c]
y_——|y_|) due to the presence of only one barrier in the X 4 * ’
system. Comparison of the contour lines of the spectral den-
sity with the mean frequenay,, from Eq.(13) shows that— and likewise forP,(y,t). Here, c.c. denotes the complex
within the relevant parameter range—the induced eigenfresonjugate andDS(x) the stationary solution of Eq7). By
quency is larger than the mean frequency. If the system igisertingP,(x,t) andP,(y,t) into Eq.(7) the general solu-
“more easily excitable,” i.e., ifx_—0 relevant contribu- tions forr,(x) andr(y) are found, again, in terms of para-
tions to higher harmonics are also obtained, and the spectrublic cylinder functions. A linear expansion of the boundary
looks very similar to that of the oscillatory system for small and jump conditions in Eq$8—10 then fixes the free con-
noise. stants of these solutions. The current between the states,

The spectrum for the symmetric oscillatory case ( which can be calculated from these solutions, contains a time
=y_>0, y,=X,) is shown in Fig. 4 as a function of fre- dependent part proportional to the external signal. This part
guency and for different noise strength. Note that the spectrdéads to ad function at the driving frequency with the am-
density is scaled logarithmically. For low noise intensity we plitude €27, where the SPAy after a lengthy calculation is
obtain high peaks close to theeterministi¢ fundamental obtained as

2

8\](2)|A|27T (\Py+_q,y7)(q)x7_(px+)+(‘Px+_qjx7)(q)y7_q)y+)
— ‘ _ (17)

77((1)31D)_ D \IIX7\I}y7_r‘I,X+r\Py+
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FIG. 5. Spectral power amplification versus frequency and noisgler

level for the bistable system for the driving modgs(a) and (Il)
(b). Inset: Contour plot of spectral amplification verddsand w,
compared with the mean frequeney,(D) (thick line) from Eq.
(13).

The functions®d, in Eq. (17) differ from W, just by the first
argument—iwg+ 1/2. For the prefactoA either A, or A,
(according to the driving mode under consideratibas to
be inserted. SincéA,|? and |A,|? differ by the factor[1
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FIG. 6. Spectral power amplification of the excitable system
sus driving frequency and noise strength for different driving
modes(l) (a) and(ll) (b). Note that two maxima occur at roughly
the same noise intensity. Inset: Contour plot of spectral amplifica-
tion versusD and wg compared with the mean frequenay,(D)
(thick line) from Eq. (13).

In Figs. §a) and 3b) the mean frequencw,, is again
plotted as a function db and compared to the contour lines,
showing a time scale matching betweep and the optimal
frequency for a large range of noise intensity and both driv-

+(1+y 2w§], a larger value of the SPA is expected for ing modes. We once more point out that this effect is a
harmonic driving of the fast variablease(ll)] than for that consequence of the nonpotential character of the FHN
of the slow variabldcase(l)]. It turns out that all observed model. It is not expected to occur in common bistable sys-
effects of the SPA frequency dependence are much morems like the continuous overdamped bistable oscillgtat
pronounced in the former case. This is remarkable becausecs the symmetric Schmitt triggi27]. Clearly, there is no
periodic signal in the equation for the voltage varialdase overall maximum of the SPAy versusD and wg for wg
(I1)] seems to be more justified from a neurobiological point>0, exactly as in the bistable systems mentioned. A de-
of view. crease of the driving frequency always yields an increasing
We now consider the amplification as a function of noisemaximum of» as a function oD.
strength and driving frequency for the regimes discussed in In the excitable dynamic&ig. 6) the resonance effect is
the preceding section for both driving modes. much more pronounced; the SPA shows a global maxi-
For the bistable symmetric system we find a well-mum with respect to noise strength and driving frequency.
pronounced maximum with respect@owhich manifests the At low frequencies the amplification reaches a limiting
occurrence of SRFig. 5. For any finite driving frequency curve, as is known from asymmetric bistable systé#;
the common stochastic resonance cu®) displaying the the maximal SPA at moderate frequencies compared to this
well-known maximum is obtaineghctually, this is shown for adiabatic limit is considerably larger in cagé) [note the
w¢>0.45 only. Additionally, a nonmonotonic dependence different scale ofy in Figs. §a) and b)]. Similarly to the
of the SPA on the driving frequency is observed. It is foundnoise-induced frequency, the optimal driving frequency does
for an intermediate range of noise intensities roughly correnot match the mean frequenay, of the system. However,
sponding to the range where coherence resonance in tladl three frequencies differ just slightly and are of the same
bistable regime occurs. At a fixed noise level the systenorder of magnitude.
shows an optimal response to an external signal with fre- The occurrence of the global maximum can be considered
guency close to the noise-induced eigenfrequency of the two different waysi(1) for fixed noise strength as a com-
system. mon resonance with respect to the noise-induced eigenfre-
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FIG. 7. Spectral power amplification in the excitable case and
driving mode(ll) versus noise intensity at different values of driv-
ing frequency(a)—(g): ws=4,5,6,7,8,9,10.

guency or(2) as a stochastic resonance which can be opti-
mized by an appropriate tuning of the driving frequency.
Another effect for the driving modél) is the occurrence of

a second maximum with respect to driving frequefEig.
6(b)]. For frequencies beyond the frequency yielding the glo-
bal maximum we find that the SPA as a functionfre-
mains nearly constant over one order of magnitud® g€f.

Fig. 7). This is shown for driving modél) in Fig. 7. Note in
particular curveb corresponding tas="5. The amplification

in this region can even display two maxima with respect to
noise strength. Although the ampilification in that parameter
range is one order of magnitude smaller than the global FIG. 8. Spectral power amplification of the oscillatory system
maximum it is remarkable that the system is quite insensitiveyersus frequency and noise level for different driving modg$a)

to the level of fluctuations. This is—apart from the well- and(Il) (b). Inset: Contour plot of spectral amplification verdds
known example if33]—possibly another inherent mecha- andws compared with the mean frequeney,(D) (thick line) from

nism of neuronal systems enabling them to detect weak sig'gq' 13).

nals without tuning noise intensity.

Finally, we turn to the spectral power amplification of the A final remark concerns the signal-to-noise ra&iR) of
symmetric oscillatory case presented in Fig. 8. As for thethe response. It can readily be calculated as the ratio of the
spectral density, we find for a low noise level peaks at theémplification given by Eq(17) and the spectrum at the driv-
basic deterministic frequenay, and its higher odd harmon- Ing frequency(14), serving as an approximation for the
ics. This is due to the fact that the “spectrum” of the deter- background noise at small signal amplitudes. However, this
ministic system even without signa€ 0) displayss spikes function does not show the relevant resonance of the system,

at these frequencies; consequently the Spdefined as the for instance, in the excitable regime with respectsta The

. o : SNR in this case either increases to infinity for increasing
weight of the peak divided by the square of the signal am- . : .
plitude €? has to diverge in the limiD—0. More surpris- frequency(second driving modeor falls rapidly off (first

ingly, in this limit the amplification of a detuned sigrabe driving mode. It is our belief that the system is rather char-

#(2m+ 1) w] tends to finite values, as can be shown by aactenzed by the coherent part of the output, quantifiedyby

small D expansion of Eq(17) (note that our system is aver-

aged with respect to the initial phase of the signal 0.3
Furthermore, if the driving frequency is between an odd n

and an even multiple ab, the oscillatory system has possi-

bly an optimal output at a finite noise levétf. Fig. 9, 0.2

although no potential barrier is present in the system. A simi-

lar effect has been found in a periodically modulated Wiener

process[34]. Noise simply facilitates the detection of a 0.1
“positively detuned” signal, since the eigenfrequency of the

system increases with growing noise and thus for a certain

noise level matches the signal frequency. This is, of course, 0.0 - -
limited by the fact that the entire system becomes more 10 D1° 10
noisy, which destroys the cooperative effect; therefore the

difference between the driving frequency and the natural fre- F|G. 9. Spectral power amplification for driving mo@ig in the
quencies of the system has to be smaller than the distance é@cillatory case versus noise intensitygt= 3.0 with the determin-
the next(even harmonics. istic eigenfrequencys,~ 1.79.

3
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than by a ratio that is not “noticed” by a neuronal systemtory case an improvement of the signal detection with the

and has been introduced in a more technical cor@si assistance of noise is possible if the signal frequency is
slightly larger than the deterministic eigenfrequency or than
V. CONCLUSIONS an odd harmonics of it. All results show selectivity of signal

detection of wealknonadiabaticsignals with respect to the
We have presented results for a solvable two-state systefjliying frequency, and thus might be relevant for neurobio-
that is the limit case of a stochastic FitzHugh-Nagumo modejygical applications of the model.

and possesses either bistable, excitable, or oscillatory behav-
ior. Various nonadiabatic resonances of the system with and
without two different kinds of periodic driving have been
discussed. Coherence resonance, i.e., the occurrence of a
noise-induced eigenfrequency, could be verified in the We would like to thank Dr. Jan A. Freund for his help in
bistable and the excitable regime, resulting in a nonmonopreparation of the manuscript. This work was supported by
tonic dependence of the spectral amplification when a harbeutsche Forschungsgemeinschaft: Graduiertenkolleg 268,
monic signal is added. This effect is much more pronouncedDynamik und Evolution zellulaer und makromolekularer

if the signal is acting directly on the voltage variable of the Prozesse” (B.L.) and Sfb 555, “Komplexe nichtlineare
FHN model. Furthermore, we have found that in the oscilla-Prozesse’(L.S.-G).
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